5ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

エタールコホモロジー

1 :132人目の素数さん:02/01/15 22:50
 エタールコホモロジー ってなんなんでしょうか....

他にもそーゆー文献を調べる機会があって、
エタール射とかモチーフとかでてくるんですけど...

 サクっと、言って下さる有識者の方kibonne.

2 :関連スレ?:02/01/15 23:05
etale cohomology から代数多様体を作る
http://cheese.2ch.net/test/read.cgi/math/994429553/

3 :132人目の素数さん:02/01/15 23:20
http://cheese.2ch.net/test/read.cgi/math/1007625226/l50

4 :132人目の素数さん:02/01/20 13:56
なんかものすごいホモみたいでかっこいい

5 :132人目の素数さん:02/01/21 23:54
http://modular.fas.harvard.edu/sga/sga/4.5/index.html

6 :同じく卒業間際4回(院逝く):02/01/25 22:14
整数 x,y はその差が整数 nで割り切れる時に, nを法として合同であると言
いx≡y(mod n)と書きます。pを素数とするとき,y2=x3−xのよう
な代数方程式に対して,等号を合同関係に置き換えてできるy2≡x3−x(mo
d p)のような形の方程式を合同方程式と呼びますが,これがどれくらい解を持
つかを考えることは,整数の問題を考える際にとても大切です。
 このような方程式を正標数の体の上の代数多様体というある種の図形ととらえる
とき,その解の個数について予想されるある性質は,このような変わった図形に対
してもコホモロジー理論が存在すると仮定すると見事に説明されます。そしてそれ
はエタールコホモロジーの理論として実現されたのでした。
 代数多様体に対しては,他にもいくつかのコホモロジー理論が作られていますが,
エタールコホモロジーを考えたグロタンディークは,それらの理論を統合する世界
を考えました。それがモチーフと呼ばれるもので現代の数論において中心的な問題
になっています。


7 : :02/01/27 00:14


8 :132人目の素数さん:02/01/30 20:43
ホモロジー、コホモロジー、トポロジー、・・・
意味判らん。

9 :132人目の素数さん:02/02/01 15:32
>>6
じゃー、トポスって何?
トポスとロゴスでトポロジーなの?

2 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.04.00 2017/10/04 Walang Kapalit ★
FOX ★ DSO(Dynamic Shared Object)